2 Дифференциальные уравнения второго порядка

2.1. Основные понятия

Определение. Уравнение вида

$$F(x, y, y', y'') = 0,$$
 (2.1)

где x — независимая переменная; y — искомая функция; y' и y'' — её производные, называется дифференциальным уравнением второго порядка.

Если уравнение можно разрешить, относительно второй производной, то его записывают в виде:

$$y'' = f(x, y, y'). (2.2)$$

Определение. *Решением уравнения* (2.1) или (2.2) называется функция $y = \varphi(x, C)$, $x \in (a,b)$ которая при подстановке в уравнение обращает его в тождество.

Начальные условия для дифференциального уравнения второго порядка имеют вид

$$y(x_0) = y_0, y'(x_0) = y'_0$$
 или $y = y_0, y' = y'_0$ при $x = x_0$. (2.3)

Теорема (теорема Коши). Если функция f(x,y,y') и ее частные производные $f_y(x,y,y')$ и $f_{y'}(x,y,y')$ определены и непрерывны в некоторой области D пространства переменных (x;y;y'), то какова бы, ни была внутренняя точка $(x_0;y_0;y_0')$ области D, существует единственное решение уравнения y''=f(x,y,y'), удовлетворяющее начальным условиям $y=y_0$, $y'=y_0'$ при $x=x_0$.

Определение. Функция $y = \varphi(x, C_1, C_2)$, зависящая от x и двух произвольных постоянных C_1 и C_2 , называется *общим решением* уравнения в некоторой области D, если она является решением уравнения при любых значениях постоянных, и если для данных начальных условий существуют единственные значения постоянных $C_1 = C_1^0$, $C_2 = C_2^0$ такие, что функция $y = \varphi(x, C_1^0, C_2^0)$ удовлетворяет заданным начальным условиям.

Определение. Общее решение в неявном виде $\Phi(x, y, C_1, C_2) = 0$ называется *общим интегралом*.

Определение. Решение дифференциального уравнения $y = \varphi(x, C_1^0, C_2^0)$, полученное из общего решения при определённых значениях постоянных $C_1 = C_1^0$, $C_2 = C_2^0$, называется его *частным решением*.